Решение матриц для чайников. Теорема условия существования обратной матрицы. Задачи для самостоятельного решения

Одежда 26.10.2020
Одежда

Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Линейная алгебра 1

Матрицы 1

Операции над матрицами 2

Определители матриц 6

Обратная матрица 13

Ранг матрицы 16

Линейная независимость 21

Системы линейных уравнений 24

Методы решения систем линейных уравнений 27

Метод обратной матрицы 27

Метод решения систем линейных уравнений с квадратной матрицей по формулам Крамера 29

Метод Гаусса (метод последовательного исключения переменных) 31

Линейная алгебра Матрицы

Матрица размераmхn– это прямоугольная таблица чисел, содержащаяmстрок иnстолбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы принято обозначать заглавными латинскими буквами, а элементы – теми же, но строчными буквами с двойной индексацией.

Например, рассмотрим матрицу А размерности 2 х 3:

В этой матрице две строки (m= 2) и три столбца (n= 3), т.е. она состоит из шести элементовa ij , гдеi- номер строки, j - номер столбца. При этом принимает значения от 1 до 2, а от одного до трех (записывается
). А именно,a 11 = 3;a 12 = 0;a 13 = -1;a 21 = 0;a 22 = 1,5;a 23 = 5.

Матрицы А и В одного размера (mхn) называютравными , если они поэлементно совпадают, т.е.a ij =b ij для
, т.е. для любыхiиj(можно записатьi,j).

Матрица-строка – это матрица, состоящая из одной строки, аматрица-столбец – это матрица, состоящая из одного столбца.

Например,
- матрица-строка, а
.

Квадратная матрица n-го порядка – это матрица, в число строк равно числу столбцов и равно n.

Например,
- квадратная матрица второго порядка.

Диагональные элементы матрицы – это элементы, у которых номер строки равен номеру столбца (a ij ,i=j). Эти элементы образуютглавную диагональ матрицы. В предыдущем примере главную диагональ образуют элементыa 11 = 3 иa 22 = 5.

Диагональная матрица – это квадратная матрица, в которой все недиагональные элементы равны нулю. Например,
- диагональная матрица третьего порядка. Если при этом все диагональные элементы равны единице, то матрица называетсяединичной (обычно обозначаются буквой Е). Например,
- единичная матрица третьего порядка.

Матрица называется нулевой , если все ее элементы равны нулю.

Квадратная матрица называется треугольной , если все ее элементы ниже (или выше) главной диагонали равны нулю. Например,
- треугольная матрица третьего порядка.

Операции над матрицами

Над матрицами можно производить следующие операции:

1. Умножение матрицы на число . Произведением матрицы А на числоназывается матрица В =А, элементы которойb ij =a ij для любыхiиj.

Например, если
, то
.

2. Сложение матриц . Суммой двух матриц А и В одинакового размера m х n называется матрица С = А + В, элементы которой с ij =a ij +b ij дляi,j.

Например, если
то

.

Отметим, что через предыдущие операции можно определить вычитание матриц одинакового размера: разность А-В = А + (-1)*В.

3. Умножение матриц . Произведением матрицы А размераmxnна матрицу В размераnxpназывается такая матрица С, каждый элемент которой с ij равен сумме произведений элементов i-й строки матрицы А на соответствующие элементыj-го столбца матрицы В, т.е.
.

Например, если

, то размер матрицы-произведения будет 2 x 3, и она будет иметь вид:

В этом случае матрица А называется согласованной с матрицей В.

На основе операции умножения для квадратных матриц определена операция возведения в степень . Целой положительной степенью А m (m > 1) квадратной матрицы А называются произведение m матриц, равных А, т.е.

Подчеркнем, что сложение (вычитание) и умножение матриц определены не для любых двух матриц, а только для удовлетворяющим определенным требованиям к своей размерности. Для нахождения суммы или разности матриц их размер обязательно должен быть одинаковым. Для нахождения произведения матриц число столбцов первой из них должно совпадать с числом строк второй (такие матрицы называют согласованными ).

Рассмотрим некоторые свойства рассмотренных операций, аналогичные свойствам операций над числами.

1) Коммутативный (переместительный) закон сложения:

А + В = В + А

2) Ассоциативный (сочетательный) закон сложения:

(А + В) + С = А + (В + С)

3) Дистрибутивный (распределительный) закон умножения относительно сложения:

(А + В) = А +В

А (В + С) = АВ + АС

(А + В) С = АС + ВС

5) Ассоциативный (сочетательный) закон умножения:

(АВ) = (А)В = А(В)

A(BС) = (АВ)С

Подчеркнем, что переместительный закон умножения для матриц в общем случае НЕ выполняется, т.е. AB BA. Более того, из существования AB не обязательно следует существование ВА (матрицы могут быть не согласованными, и тогда их произведение вообще не определено, как в приведенном примере умножения матриц). Но даже если оба произведения существуют, они обычно разные.

В частном случае коммутативным законом обладает произведение любой квадратной матрицы А на единичную матрицу того же порядка, причем это произведение равно А (умножение на единичную матрицу здесь аналогично умножению на единицу при умножении чисел):

АЕ = ЕА = А

В самом деле,

Подчеркнем еще одно отличие умножения матриц от умножения чисел. Произведение чисел может равняться нулю тогда и только тогда, когда хотя бы одно из них равно нулю. О матрицах этого сказать нельзя, т.е. произведение ненулевых матриц может равняться нулевой матрице. Например,

Продолжим рассмотрение операций над матрицами.

4. Транспонирование матрицы представляет собой операцию перехода от матрицы А размераmxnк матрице А Т размераnxm, в которой строки и столбцы поменялись местами:

%.

Свойства операции транспонирования:

1) Из определения следует, что если матрицу транспонировать дважды, мы вернемся к исходной матрице: (A T) T = A.

2) Постоянный множитель можно вынести за знак транспонирования: (А) T =А T .

3) Транспонирование дистрибутивно относительно умножения и сложения матриц: (AB) T =B T A T и (A+B) T =B T +A T .

Умножение

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы .

Это условие не выполняется, произведение АВ не существует.

Произведение матрицы и вектора А b :

Скалярное произведение векторов ( b ,с):

Найти определитель матрицы А:

В частности, формула вычисления определителя матрицы

такова:

= a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31

2*(-4)*5 – 2*4*2 – (-2)*5*5 + (-2)*4*(-1) +(-1)*5*2 – (-1)*(-4)*(-1) = -40 – 16 +50 + 8 – 10 + 4 = -4

Найти обратную матрицу А -1:

Решение .


Определитель введенной Вами матрицы равен:

Определитель не равен нулю, следовательно обратная матрица существует.

Допишем к исходной матрице единичную матрицу справа.

Начнем приведение левой квадратной матрицы к единичному виду. При помощи элементарных преобразований уберем все коэффициенты ниже главной диагонали.


Приведем все коэффициенты выше главной диагонали к 0, при помощи элементарных преобразований.

Ответ .

Как уже ранее упоминалось, мы при помощи элементарных преобразований переместили единичную матрицу из правой части в левую, при этом не нарушив ни одного правила работы с матрица.

Квадратная матрица, которую Вы видите справа и есть обратная матрица к введенной Вами .


Решение системы уравнений Ах= b :

Условие

Найдем определитель главной матрицы, составленной из коэффициентов при X 1 - n:

Определитель главной матрицы системы уравнений не равен нулю, следовательно данная система уравнений имеет единственное решение. Найдем его. Достоим главный определитель системы уравнений еще одним столбцом, в который вставим значения за знаком равенства.

Теперь последовательно, при помощи элементарных преобразований преобразуем левую часть матрицы (3 × 3) до треугольного вида (обнулим все коэффициенты находящиеся не на главной диагонали, а коэффициенты на главной диагонали преобразуем до единиц).

Вычтем 1 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 2 - ую строку из всех строк, которые находятся ниже нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 3 - ую строку из всех строк, которые находятся выше нее. Это действие не противоречит элементарным преобразованиям матрицы.

Вычтем 2 - ую строку из всех строк, которые находятся выше нее. Это действие не противоречит элементарным преобразованиям матрицы.


Приведем все коэффициенты на главной диагонали матрицы к 1. Поделим каждую строку матрицы на коэффициент этой строки находящийся на главной диагонали, если он не равен 1.

Ответ .

Числа получившиеся правее единичной матрицы и будут решением Вашей системы уравнений.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования: 1) умножение строки матрицы на число, отличное от нуля; 2) прибавление к одной строке матрицы другой строки; 3) перестановка строк; 4) вычеркивание (удаление) одной из одинаковых строк (столбцов); 5) транспонирование матрицы ;

Те же операции, применяемые для столбцов матрицы , также называются элементарными преобразованиями. С помощью элементарных преобразований можно к какой-либо строке или столбцу матрицы прибавить линейную комбинацию остальных строк (столбцов).

Начинаем решать вот такую систему уравнений методом Гаусса


Определитель основной матрицы равен -4

Хотим сделать элемент равным 1. Разделили всю строку 1 на элемент =2.

Сделали в 1 строке элемент 1 единичным.

Обнулим 1 столбец: Из 2 строки вычли 1 строку , умноженную на элемент =5.

Из 3 строки вычли 1 строку , умноженную на элемент =-1.



Рекомендуем почитать

Наверх